MATH 32 FALL 2012

 MIDTERM 2 - SOLUTIONS(1) (6 points) Find all values of x satisfying $2 \log _{5}(x)+\log _{25}(x)=5$.

Solution:

$$
\begin{aligned}
2 \log _{5}(x)+\frac{\log _{5}(x)}{\log _{5}(25)} & =5 \\
2 \log _{5}(x)+\frac{\log _{5}(x)}{2} & =5 \\
\frac{5 \log _{5}(x)}{2} & =5 \\
\log _{5}(x) & =2 \\
x & =25
\end{aligned}
$$

(2) A population of rabbits starts at 10 and doubles every 3 months.
(a) (6 points) Write down an expression for the rabbit population after t months have passed.
(b) (6 points) After how many months do you expect to have 200 rabbits? Write your answer as precisely as possible.

Solution:

(a) $P=10 \cdot 2^{\frac{t}{3}}$.
(b) Solve $200=10 \cdot 2^{\frac{t}{3}} \cdot 2^{\frac{t}{3}}=20, \frac{t}{3}=\log _{2}(20)$, so $t=3 \log _{2}(20)$.
(3) The equation $x^{2}-2 x+4 y^{2}+24 y+33=0$ describes an ellipse.
(a) (6 points) Write this equation in the form $\frac{(x-h)^{2}}{a^{2}}+\frac{(y-v)^{2}}{b^{2}}=1$.
(b) (3 points) What is the center of the ellipse?
(c) (3 points) What is the area of the ellipse?

Solution:

(a) Completing the square twice,

$$
\begin{aligned}
(x-1)^{2}-1+4\left(y^{2}+6 y\right)+33 & =0 \\
(x-1)^{2}+4(y+3)^{2}-36+32 & =0 \\
\frac{(x-1)^{2}}{1}+4 \frac{(y+3)^{2}}{1} & =4 \\
\frac{(x-1)^{2}}{2^{2}}+\frac{(y+3)^{2}}{1^{2}} & =1
\end{aligned}
$$

(b) $(1,-3)$
(c) $2 \cdot 1 \cdot \pi=2 \pi$.
(4) Consider the rational function

$$
f(x)=\frac{(2 x+4)(3 x-1)(x+1)}{x^{3}+x}
$$

You do not need to sketch a graph of f.
(a) (3 points) Does f have a horizontal asymptote? If so, what is it?
(b) (3 points) Does f have any vertical asymptotes? If so, what are they?
(c) (3 points) Does f have a y-intercept? If so, what is it?
(d) (3 points) Does f have any x-intercepts? If so, what are they?

Solution:

(a) Yes, the leading term of the numerator is $6 x^{3}$ and the leading term of the denominator is x^{3}, so the horizontal asymptote is $y=6$.
(b) Yes, the denominator factors as $x\left(x^{2}+1\right), x^{2}+1$ has no zeros, and $x=0$ is not a zero of the numerator, so there is one vertical asympotote, $x=0$.
(c) No, since the function is not defined when $x=0$.
(d) Yes, the zeros of the numerator are $x=-2, x=\frac{1}{3}$, and $x=-1$, and these are not zeros of the denominator, so the x-intercepts are $(-2,0),\left(\frac{1}{3}, 0\right)$, and $(-1,0)$.
(5) (a) Find a point (x, y) so that $(4,-3)$ is the midpoint of the line segment connecting $\left(6,-\frac{9}{2}\right)$ and (x, y).
(b) What is the length of this line segment?

Solution:

(a) We must have $\frac{x+6}{2}=4$ and $\frac{y-\frac{9}{2}}{2}=-3$, so $x=2$ and $y=-\frac{3}{2}$.
(b) The length of the segment connecting $\left(6,-\frac{9}{2}\right)$ and $\left(2,-\frac{3}{2}\right)$ is $\sqrt{(6-2)^{2}+\left(-\frac{9}{2}--\frac{3}{2}\right)^{2}}=$ $\sqrt{16+9}=\sqrt{25}=5$.
(6) (6 points) Using the approximation formula $e^{t} \approx 1+t$ when t is small, approximate the value of

$$
\frac{e^{2.04} e^{3.002}}{e^{5}}
$$

Solution: $e^{2.04+3.002-5}=e^{.042} \approx 1+.042=1.042$.

