MATH 32 FALL 2012 **MIDTERM 2 - SOLUTIONS**

(1) (6 points) Find all values of x satisfying $2\log_5(x) + \log_{25}(x) = 5$.

Solution:

$$2\log_5(x) + \frac{\log_5(x)}{\log_5(25)} = 5$$
$$2\log_5(x) + \frac{\log_5(x)}{2} = 5$$
$$\frac{5\log_5(x)}{2} = 5$$
$$\log_5(x) = 2$$
$$x = 25$$

- (2) A population of rabbits starts at 10 and doubles every 3 months.
 - (a) (6 points) Write down an expression for the rabbit population after t months have passed.
 - (b) (6 points) After how many months do you expect to have 200 rabbits? Write your answer as precisely as possible.

Solution:

(a)
$$P = 10 \cdot 2^{\frac{5}{3}}$$

(b) Solve $200 = 10 \cdot 2^{\frac{t}{3}}$. $2^{\frac{t}{3}} = 20$, $\frac{t}{3} = \log_2(20)$, so $t = 3\log_2(20)$.

(3) The equation $x^2 - 2x + 4y^2 + 24y + 33 = 0$ describes an ellipse.

- (a) (6 points) Write this equation in the form $\frac{(x-h)^2}{a^2} + \frac{(y-v)^2}{b^2} = 1$. (b) (3 points) What is the center of the ellipse?
- (c) (3 points) What is the area of the ellipse?

Solution:

(a) Completing the square twice,

$$(x-1)^{2} - 1 + 4(y^{2} + 6y) + 33 = 0$$
$$(x-1)^{2} + 4(y+3)^{2} - 36 + 32 = 0$$
$$\frac{(x-1)^{2}}{1} + 4\frac{(y+3)^{2}}{1} = 4$$
$$\frac{(x-1)^{2}}{2^{2}} + \frac{(y+3)^{2}}{1^{2}} = 1$$

(b) (1, -3)(c) $2 \cdot 1 \cdot \pi = 2\pi$. (4) Consider the rational function

$$f(x) = \frac{(2x+4)(3x-1)(x+1)}{x^3+x}$$

You do *not* need to sketch a graph of f.

- (a) (3 points) Does f have a horizontal asymptote? If so, what is it?
- (b) (3 points) Does f have any vertical asymptotes? If so, what are they?
- (c) (3 points) Does f have a y-intercept? If so, what is it?
- (d) (3 points) Does f have any x-intercepts? If so, what are they?

Solution:

- (a) Yes, the leading term of the numerator is $6x^3$ and the leading term of the denominator is x^3 , so the horizontal asymptote is y = 6.
- (b) Yes, the denominator factors as $x(x^2+1)$, x^2+1 has no zeros, and x=0 is not a zero of the numerator, so there is one vertical asymptote, x = 0.
- (c) No, since the function is not defined when x = 0.
- (d) Yes, the zeros of the numerator are $x = -2, x = \frac{1}{3}$, and x = -1, and these are not zeros of the denominator, so the x-intercepts are (-2, 0), $(\frac{1}{3}, 0)$, and (-1, 0).
- (5) (a) Find a point (x, y) so that (4, -3) is the midpoint of the line segment connecting $(6, -\frac{9}{2})$ and (x, y).
 - (b) What is the length of this line segment?

Solution:

- (a) We must have $\frac{x+6}{2} = 4$ and $\frac{y-\frac{9}{2}}{2} = -3$, so x = 2 and $y = -\frac{3}{2}$. (b) The length of the segment connecting $(6, -\frac{9}{2})$ and $(2, -\frac{3}{2})$ is $\sqrt{(6-2)^2 + (-\frac{9}{2} -\frac{3}{2})^2} =$ $\sqrt{16+9} = \sqrt{25} = 5.$
- (6) (6 points) Using the approximation formula $e^t \approx 1 + t$ when t is small, approximate the value of

$$\frac{e^{2.04}e^{3.002}}{e^5}$$

Solution: $e^{2.04+3.002-5} = e^{.042} \approx 1 + .042 = 1.042$.